Humans exhibit rather limited capabilities for tissue repair and regeneration. In contrast, organisms with remarkable regenerative abilities can be found in nature. Among these, salamanders (such as newts and axolotls) are considered the champions of regeneration, being able to regrow an extraordinary range of complex structures including ocular tissues, tail, jaws, large sections of their heart, parts of their nervous system, and entire limbs throughout their life. As such, the salamander constitutes an ideal system in which to learn how accurate regeneration of body structures can be achieved.
The Yun lab at CIMR aims leverages experimentally tractable salamander systems in order to unveil the cellular and molecular mechanisms underlying organ regeneration, determine how phylogenetic changes affect regenerative potential, and probe the links between regeneration and ageing.
1. Regulation of cellular plasticity during regeneration
2. Uncovered critical roles of senescent cells in vertebrate development and regeneration (eLife 2015, Development 2017, Aging Cell 2023, Developmental Cell 2023) and contributed guidelines for studies of cell senescence in vivo (Cell 2024)
4. Uncovered basic mechanisms of double-strand break repair, critical for genome stability maintenance and senescence avoidance (Nature 2009)
Brown T., Mishra K., Elewa A., Iarovenko S., Subramanian E., Joven A., Petzold A., Fromm B., Friedlander M., Susuki M., Hayashi T., Suzuki K., Toyoda A., Oliveira A.C., Osipova E., Hiller M., Leigh N.*, Yun M.H.* Simon A.*. Chromosome-Scale Genome Assembly Reveals How Repeat Elements Shape Non-Coding RNA Landscapes Active During Newt Limb Regeneration. Cell Genomics, 2025, 5: 100761. DOI: 10.1016/j.xgen.2025.100761
Haluza Y., Zoller J., Walters H., Lachnit M., Hagahni A., Lu A., Low R., Park N., Brooke R., Yun M.H.*, Horvath S.*. Axolotl epigenetic clocks offer insights into the nature of negligible senescence. bioRxiv, 2024. DOI: 10.1101/2024.09.09.611397
Yu Q., Walters H.E., Pasquini G., Pal Singh S., Lachnit M., Oliveira C.R., León-Periñán D., Petzold A., Kesavan P., Subiran Adrados C., Garteizgogeascoa I., Knapp D., Wagner A., Bernardos A., Alfonso M., Nadar G., Graf A.M., Troyanovskiy K.E., Dahl A., Busskamp V., Martínez-Máñez R., Yun M.H.*. Cellular senescence promotes progenitor cell expansion during axolotl limb regeneration. Developmental Cell, 2023, 58: 2416–2427. DOI: 10.1016/j.devcel.2023.09.009
Walters H.*, Troyanovskiy K., Graf A., Yun M.H.*. Senescent cells enhance newt limb regeneration by promoting muscle dedifferentiation. Aging Cell, 2023, 22: e13826. DOI: 10.1111/acel.13826
Oliveira C.R., Knapp D., Elewa A, Gonzalez Malagon S., Gates P.B., Petzhold A., Arce H., Cordoba R.C., Chara O., Tanaka E. M., Simon A., Yun M.H.*. Tig1 regulates proximo-distal identity during salamander limb regeneration. Nature Communications, 2022, 13: 1141. DOI: 10.1038/s41467-022-28755-1
Woych J., Ortega Gurrola A., Deryckere A., Jaeger E., Gumnit E., Merello G., Gu J., Joven Araus A., Leigh N., Yun M.H., Simon A., Tosches M.A. Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution. Science, 2022, 377: 1063. DOI: 10.1126/science.abp9186
Davaapil H., Brockes J.P. & Yun M.H.*. Conserved and novel functions of programmed cellular senescence during vertebrate development. Development, 2017, 144: 106–114. DOI: 10.1242/dev.138222
Yun M.H.*, Davaapil H. & Brockes J.P. Recurrent turnover of senescent cells during regeneration of a complex structure. eLife, 2015, 4: e05505. DOI: 10.7554/eLife.05505
Yun M.H.*, Gates P.B. & Brockes J.P. Regulation of p53 is critical for vertebrate limb regeneration. PNAS, 2013, 110: 17392-7. DOI: 10.1073/pnas.1310519110
Yun M.H. & Hiom K.J.*. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature, 2009, 459: 460–463. DOI: 10.1038/nature07955